skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ziegler, Carl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the discovery and characterization of TOI-4364b, a young mini-Neptune in the tidal tails of the Hyades cluster, identified through TESS transit observations and ground-based follow-up photometry. The planet orbits a bright M dwarf (K= 9.1 mag) at a distance of 44 pc, with an orbital period of 5.42 days and an equilibrium temperature of 48 8 7 + 9 K. The host star's well-constrained age of 710 Myr makes TOI-4364b an exceptional target for studying early planetary evolution around low-mass stars. We determined a planetary radius of 2.0 1 0.08 + 0.10 R , indicating that this planet is situated near the upper edge of the radius valley. This suggests that the planet retains a modest H/He envelope. As a result, TOI-4364b provides a unique opportunity to explore the transition between rocky super-Earths and gas-rich mini-Neptunes at the early stages of evolution. Its radius, which may still evolve as a result of ongoing atmospheric cooling, contraction, and photoevaporation, further enhances its significance for understanding planetary development. Furthermore, TOI-4364b’s moderately high transmission spectroscopy metric of 44.2 positions it as a viable candidate for atmospheric characterization with instruments such as JWST. This target has the potential to offer crucial insights into atmospheric retention and loss in young planetary systems. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  2. Abstract We present the discovery of 11 new transiting brown dwarfs (BDs) and low-mass M dwarfs from NASA’s Transiting Exoplanet Survey Satellite (TESS) mission: TOI-2844, TOI-3122, TOI-3577, TOI-3755, TOI-4462, TOI-4635, TOI-4737, TOI-4759, TOI-5240, TOI-5467, and TOI-5882. They consist of five BD companions and six very-low-mass stellar companions ranging in mass from 25MJto 128MJ. We used a combination of photometric time-series, spectroscopic, and high-resolution imaging follow-up as a part of the TESS Follow-up Observing Program (or TFOP) to characterize each system. With over 50 transiting BDs confirmed, we now have a large enough sample to directly test different formation and evolutionary scenarios. We provide a renewed perspective on the transiting “brown dwarf desert” and its role in differentiating between planetary and stellar formation mechanisms. Our analysis of the eccentricity distribution for the transiting BD sample does not support previous claims of a transition between planetary and stellar formation at ∼42MJ. We also contribute a first look into the metallicity distribution of transiting companions in the range 7–150MJ, showing that this does not support a ∼42MJtransition too. Finally, we also detect a significant lithium absorption feature in one of the BD hosts (TOI-5882). However, we determine that the host star is likely old based on rotation, kinematic, and photometric mdeasurements. We therefore claim that TOI-5882 may be a candidate for planetary engulfment. 
    more » « less
    Free, publicly-accessible full text available July 4, 2026
  3. Abstract Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (NotchandLOCoR). We find that the planets are 2.10 ± 0.09Rand 2.88 ± 0.10Rand orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K= 9.1 mag), small (R*= 0.44R), and cool (Teff= 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST. 
    more » « less
  4. Abstract Young eclipsing binaries (EBs) are powerful probes of early stellar evolution. Current models are unable to simultaneously reproduce the measured and derived properties that are accessible for EB systems (e.g., mass, radius, temperature, and luminosity). In this study we add a benchmark EB to the pre-main-sequence population with our characterization of TOI 450 (TIC 77951245). Using Gaia astrometry to identify its comoving, coeval companions, we confirm TOI 450 is a member of the ∼40 Myr Columba association. This eccentric (e= 0.2969), equal-mass (q= 1.000) system provides only one grazing eclipse. Despite this, our analysis achieves the precision of a double-eclipsing system by leveraging information in our high-resolution spectra to place priors on the surface-brightness and radius ratios. We also introduce a framework to include the effect of star spots on the observed eclipse depths. Multicolor eclipse light curves play a critical role in breaking degeneracies between the effects of star spots and limb-darkening. Including star spots reduces the derived radii by ∼2% from a unspotted model (>2σ) and inflates the formal uncertainty in accordance with our lack of knowledge regarding the starspot orientation. We derive masses of 0.1768( ± 0.0004) and 0.1767( ± 0.0003)M, and radii of 0.345(±0.006) and 0.346(±0.006)Rfor the primary and secondary, respectively. We compare these measurements to multiple stellar evolution isochones, finding good agreement with the association age. The MESA MIST and SPOTS (fs= 0.17) isochrones perform the best across our comparisons, but detailed agreement depends heavily on the quantities being compared. 
    more » « less
  5. Abstract Young terrestrial worlds are critical test beds to constrain prevailing theories of planetary formation and evolution. We present the discovery of HD 63433 d—a nearby (22 pc), Earth-sized planet transiting a young Sun-like star (TOI-1726, HD 63433). HD 63433 d is the third planet detected in this multiplanet system. The kinematic, rotational, and abundance properties of the host star indicate that it belongs to the young (414 ± 23 Myr) Ursa Major moving group, whose membership we update using new data from the third data release of the Gaia mission and TESS. Our transit analysis of the TESS light curves indicates that HD 63433 d has a radius of 1.1Rand closely orbits its host star with a period of 4.2 days. To date, HD 63433 d is the smallest confirmed exoplanet with an age less than 500 Myr, and the nearest young Earth-sized planet. Furthermore, the apparent brightness of the stellar host (V≃ 6.9 mag) makes this transiting multiplanet system favorable to further investigations, including spectroscopic follow-up to probe the atmospheric loss in a young Earth-sized world. 
    more » « less
  6. Abstract Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These ‘hot Jupiter’ planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6–8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity ofe = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity. 
    more » « less
  7. Abstract Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’sTESSmission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55MJ<MP< 3.88MJ) and sizes (0.967RJ<RP< 1.438RJ) and orbit stars that have an effective temperature in the range of 5360 K <Teff< 6860 K with GaiaG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b ( e = 0.259 0.036 + 0.033 ) and TOI-5301 b ( e = 0.33 0.10 + 0.11 ). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution. 
    more » « less
  8. Abstract We report the discovery and characterization of a nearby (∼85 pc), older (27 ± 3 Myr), distributed stellar population near Lower Centaurus Crux (LCC), initially identified by searching for stars comoving with a candidate transiting planet from TESS (HD 109833; TOI 1097). We determine the association membership using Gaia kinematics, color–magnitude information, and rotation periods of candidate members. We measure its age using isochrones, gyrochronology, and Li depletion. While the association is near known populations of LCC, we find that it is older than any previously found LCC subgroup (10–16 Myr), and distinct in both position and velocity. In addition to the candidate planets around HD 109833, the association contains four directly imaged planetary-mass companions around three stars, YSES-1, YSES-2, and HD 95086, all of which were previously assigned membership in the younger LCC. Using the Notch pipeline, we identify a second candidate transiting planet around HD 109833. We use a suite of ground-based follow-up observations to validate the two transit signals as planetary in nature. HD 109833 b and c join the small but growing population of <100 Myr transiting planets from TESS. HD 109833 has a rotation period and Li abundance indicative of a young age (≲100 Myr), but a position and velocity on the outskirts of the new population, lower Li levels than similar members, and a color–magnitude diagram position below model predictions for 27 Myr. So, we cannot reject the possibility that HD 109833 is a young field star coincidentally nearby the population. 
    more » « less
  9. Abstract JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperatureTeqand planetary radiusRpand are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community. 
    more » « less